公共基础课 > 其它
数值分析Numerical Analysis(第2版)
书号:9787113228002 套系名称:普通高等学校“十三五”规划教材
作者:苏岐芳 出版日期:2017-02-01
定价:39.80 页码 / 开本:344 /16
策划编辑:李小军 责任编辑:张文静 徐盼欣
适用专业:无 适用层次:本科
最新印刷时间:2022-08-25
资源下载
教学课件
教学素材(暂无)
习题答案(暂无)
教学案例(暂无)
教学设计(暂无)
教学视频(暂无)
内容简介
前言
目录
作者介绍
图书特色
本书介绍了科学计算中常用数值分析的基础理论及计算机实现方法。主要内容包括:误差分析、插值、函数逼近、数值积分和数值微分、非线性方程的数值解法、线性方程组的直接解法、线性方程组的迭代解法、常微分方程的数值解法及相应的上机实验内容等。各章都配有大量的习题及上机实验题目,并附有部分习题的参考答案及数学专业软件Mathematica和Matlab的简介。
本书采用中、英两种语言编写,适合作为数学、计算机和其他理工类各专业本科“数值分析(计算方法)”双语课程的教材或参考书,也可供从事科学计算的相关技术人员参考。无
- 1 Error Analysis ......11.1 Introduction ............ 11.2 Sources of Errors .... 21.3 Errors and Significant Digits .......... 41.4 Error Propagation ... 81.5 Qualitative Analysis and Control of Errors ............ 91.5.1 Ill-condition Problem and Condition Number....................... 91.5.2 The Stability of Algorithm .. 101.5.3 The Control of Errors .......... 111.6 Computer Experiments................. 141.6.1 Functions Needed in the Experiments by Mathematica ...... 141.6.2 Experiments by Mathematica...................... 141.6.3 Functions Needed in the Experiments by Matlab................ 161.6.4 Experiments by Matlab ....... 16Exercises 1..................... 172 Interpolating.......192.1 Introduction .......... 202.2 Basic Concepts ..... 212.3 Lagrange Interpolation ................. 222.3.1 Linear and Parabolic Interpolation .............. 222.3.2 Lagrange Interpolation Polynomial............. 242.3.3 Interpolation Remainder and Error Estimate....................... 252.4 Divided-differences and Newton Interpolation .... 292.5 Differences and Newton Difference Formulae..... 332.5.1 Differences .. 332.5.2 Newton Difference Formulae ...................... 352.6 Hermite Interpolation ................... 382.7 Piecewise Low Degree Interpolation.................... 422.7.1 Ill-posed Properties of High Degree Interpolation .............. 422.7.2 Piecewise Linear Interpolation .................... 432.7.3 Piecewise Cubic Hermite Interpolation....... 442.8 Cubic Spline Interpolation............ 452.8.1 Definition of Cubic Spline... 452.8.2 The Construction of Cubic Spline ............... 462.9 Computer Experiments................. 492.9.1 Functions Needed in the Experiments by Mathematica ...... 492.9.2 Experiments by Mathematica...................... 502.9.3 Experiments by Matlab ....... 56Exercises 2................... 643 Best Approximation ...................683.1 Introduction .......... 683.2 Norms ................... 693.2.1 Vector Norms ...................... 693.2.2 Matrix Norms ...................... 743.3 Spectral Radius..... 763.4 Best Linear Approximation .......... 793.4.1 Basic Concepts and Theories....................... 793.4.2 Best Linear Approximation . 813.5 Discrete Least Squares Approximation ................ 823.6 Least Squares Approximation and Orthogonal Polynomials........ 873.7 Rational Function Approximation 943.7.1 Continued Fractions ............ 943.7.2 Padé Approximation............ 973.8 Computer Experiments................. 993.8.1 Functions Needed in The Experiments by Mathematica..... 993.8.2 Experiments by Mathematica.................... 1003.8.3 Functions Needed in The Experiments by Matlab ............ 1063.8.4 Experiments by Matlab ..... 106Exercises 3................. 1114 Numerical Integration and Differentiation ........1144.1 Introduction ........ 1154.2 Interpolatory Quadratures........... 1164.2.1 Interpolatory Quadratures.. 1164.2.2 Degree of Accuracy........... 1174.3 Newton-Cotes Quadrature Formula.................... 1184.4 Composite Quadrature Formula . 1234.4.1 Composite Trapezoidal Rule ..................... 1234.4.2 Composite Simpson’s Rule ....................... 1244.5 Romberg Integration................... 1254.5.1 Recursive Trapezoidal Rule ...................... 1254.5.2 Romberg Algorithm .......... 1264.5.3 Richardson’s Extrapolation ....................... 1284.6 Gaussian Quadrature Formula .... 1294.7 Multiple Integrals ....................... 1344.8 Numerical Differentiation........... 1354.8.1 Numerical Differentiation . 1354.8.2 Differentiation Polynomial Interpolation .. 1374.8.3 Richardson’s Extrapolation ....................... 1414.9 Computer Experiments............... 1444.9.1 Functions Needed in the Experiments by Mathematica .... 1444.9.2 Experiments by Mathematica.................... 1444.9.3 Experiments by Matlab ..... 149Exercises 4................... 1535 Solution of Nonlinear Equations ......................1565.1 Introduction ........ 1565.2 Basic Theories .... 1585.3 Bisection Method 1595.4 Iterative Method and Its Convergence................ 1625.4.1 Fixed Point and Iteration ... 1625.4.2 Global Convergence.......... 1635.4.3 Local Convergence............ 1655.4.4 Order of Convergence ....... 1675.5 Accelerating Convergence.......... 1685.6 Newton’s Method ....................... 1705.6.1 Newton’s Method and Its Convergence .... 1705.6.2 Reduced Newton Method and Newton’s Descent Method ....................... 1725.6.3 The Case of Multiple Roots....................... 1735.7 Secant Method and Muller Method .................... 1745.7.1 Secant Method................... 1745.7.2 Muller Method................... 1755.8 Systems of Nonlinear Equations. 1765.9 Computer Experiments............... 1795.9.1 Functions Needed in the Experiments by Mathematica .... 1795.9.2 Experiments by Mathematica.................... 1805.9.3 Experiments by Matlab ..... 185Exercises 5................. 1886 Direct Methods for Solving Linear Systems ....1916.1 Introduction ........ 1926.2 Gaussian Elimination.................. 1936.2.1 Basic Gaussian Elimination....................... 1936.2.2 Triangular Decomposition. 1976.3 Gaussian Elimination with Column Pivoting ..... 2006.4 Methods of the Triangular Decomposition......... 2026.4.1 The Direct Methods of The Triangular Decomposition .... 2026.4.2 The Square Root Method .. 2036.4.3 The Speedup Method......... 2066.5 Analysis of Round-off Errors ..... 2106.5.1 Condition Number............. 2106.5.2 Iterative Refinement .......... 2146.6 Computer Experiments............... 2156.6.1 Functions Needed in the Experiments by Mathematica .... 2156.6.2 Experiments by Mathematica.................... 2156.6.3 Functions Needed in the Experiments by Matlab.............. 2226.6.4 Experiments by Matlab ..... 222Exercises 6................... 2277 Iterative Techniques for Solving Linear Systems ....................2307.1 Introduction ........ 2317.2 Basic Iterative Methods .............. 2337.2.1 Jacobi Method ................... 2347.2.2 Gauss-Seidel Method ........ 2367.2.3 SOR Method...................... 2377.3 Iterative Method Convergence ... 2387.3.1 Basic Theorems ................. 2387.3.2 Some Special Systems of Equations.......... 2437.4 Computer Experiments............... 2477.4.1 Functions Needed in The Experiments by Mathematica... 2477.4.2 Experiments by Mathematica.................... 2477.4.3 Experiments by Matlab ..... 251Exercises 7................... 2558 Numerical Solution of Ordinary Differential Equations ............2588.1 Introduction ........ 2588.2 The Existence and Uniqueness of Solutions....... 2608.3 Taylor-Series Method................. 2628.4 Euler’s Method ... 2638.5 Single-step Methods ................... 2678.5.1 Single-step Methods.......... 2678.5.2 Local Truncation Error ...... 2678.6 Runge-Kutta Methods ................ 2688.6.1 Second-Order Runge-Kutta Method.......... 2688.6.2 Fourth-Order Runge-Kutta Method........... 2708.7 Multistep Methods...................... 2718.7.1 General Formulas of Multistep Methods... 2728.7.2 Adams Explicit and Implicit Formulas...... 2738.8 Systems and Higher-Order Differential Equations..................... 2758.8.1 Vector Notation ................. 2768.8.2 Taylor-Series Method for Systems............ 2788.8.3 Fourth-Order Runge-Kutta Formula for Systems.............. 2798.9 Computer Experiments............... 2818.9.1 Functions Needed in the Experiments by Mathematica .... 2818.9.2 Experiments by Mathematica.................... 2818.9.3 Experiments by Matlab ..... 286Exercises 8................... 290Appendix ...............293Appendix A Mathematica Basic Operations ............ 293Appendix B Matlab Basic Operations ...................... 309Appendix C Answers to Selected Question.............. 327Reference..............332
- 1、先进性:在与我国目前高等学校的相关课程设置、知识体系相匹配的同时,融入国内外同类教材的优点,努力体现当今该学科的最新研究成果。2、复合性:整合《数值分析》与《数学实验》、《Matlab语言与数值计算》等后续课程,对典型算法给出计算机实现程序,使各种数值计算方法在实际应用中真正得以实现。3、应用性:借鉴国外先进的Project、Cousework等教学思想、手段和方法设计习题,使教材具有多学习途径、多研究方法等功能,体现应用性。4、实用性:力求文字表述规范,符合惯用语法,且通俗易懂。对文中出现的专业词汇给出中文注释,便于自学。